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Abstract

Examining heat storage in building construction materials and assemblies — often referred
1o as thermal storage — by means of a periodically oscillating model of thermal conduction leads
to a generalized conductance concept (complex conductance matrices). This concepl can serve
as the basis for three- dimensional, non-steady-state calculations of the thermal performance
of buildings. Relationships to the concept of effective thermal capacity (previously introduced
in other publications) are established in context.

1 Introduction

The thermal capacity of building components is of particular importance to the thermal performance
of enclosed spaces under summer conditions. Although this fact has been generally acknowledged
for some time, its ramifications still have not been entirely researched and determined.

Early attempts at quantifying heat storage capacities can be found in Bruckmayer's work [1],
which introduces the concepts of "equivalent-storing brick thickness” and "cooling time value”.
Later (1952), Sklover [2] introduces "damping” and "phase shifts” of building components — terms
which have also found their way into standards for building performance in the former Democratic
Republic of Germany. For the first time, such values account for periodic fluctnations (as opposed
to Bruckmayer's values), with a period lasting 24 hours. Towards the end of the sixties, [Heind! [3]
publisiied values for "temperatare amplitude dampening”, "thermal alternate flow resistance”, ete.
Because of poorly chosen bonndary conditions, however. these values proved to be of little practical
(PR LN

Around 1970, on the basis of building component matrices (already mentioned by Carstaw-Jaeger
[3] and applied to the study of building thermal performance by Heindl [3]), Haferland, Heindl, and
Fuchs [4] developed a computer program which allows the calculation of daily internal temperature
fluctuations while taking into account the thermal capacity of building components. Here, only
one—dimensional heat flow patterns have heen considered.

The concept of effective thermal capacity of plane building components composed of several ho-
mogeneous layers, as later introduced by Heindl [6], actually represents a theoretical regression in
comparison to the computer-aided model. Nonetheless, since it apparently better suits the prac-
tical need for easily comprehensibie values, Heindl's simplified model has even found its way into
Anstrian building standards (specifically BR1I0}. This is not identical, however, to the concept
introduced here for "effective thermal capacity”. Furthermore, limiting its application 1o piane
(slab-shaped) components is unnecessary — as shall be shown in the following.
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[t would certainly not be relevant to consider heat storage in an isolated manner, independent of
other thermal problems. In order Lo more completely, systematically describe this subject, a larger
framework must be introduced.

2 The thermal conduction model

Heat flow in a building occurs by means of conduction, convection, and radiation. Within a building
component, conduction plays the primary role; convection and radiation are generally secondary.

For our purposes, we can visualize a solid body of material with one exterior surface (in contact
with outside air) and one or wore interior surfaces (bordering various inner spaces). The diagram
below, illustration 1 — two-dimensional for the purpose of simplification — should illustrate this.

room 0: exterior air

room 2
(interior}

room |
{interior)

.-

room (; exterior air

Figure 1! diagran of a building with three interior SPACES

Though the form of representation wmight appear peculiar to an architect, it has been chosen to
reduce the significance of the generally conumon — but for our purposes unnecessary — distinetion
between interior and exterior walls,

As is well known, heat transmission in a conducting solid is described by Fourier's law of heat
conduction, which relates the leat flow rate ¢ to the gradient of temperature [

q = —Agradl/ ’ (1)

For the isotropic case, the thermal conductivity is a scalar; in the event of anisotropy (for example,
with the building material wood}, it is a second -order symmetric tensor.

Fourier's law of heat condnction has yet to be completed by a heat balancing equation which
connects the field source of the heat How rate § with the time-dependancy of temperature [;

ol :
t'-g--}}-t— = —div(q) i (2)



in which ¢ is the specific heat and p the mass per unit volume of a given building material. This
equation is only valid for the case that no heat source is located within the solid, the only case that
is of interest to us here.

For the following, it shail be assumed that A, ¢ and p are all strictly functions of position, in
particular, independent of temperature /. If we work Fourier's faw (1) into equation (2), we obtain
the familiar equation of heat flow in the form:

c-gr%% = div(Agradll) : (3}

This differential equation is linear and homogeneons, and can furthermore be satisfied by any
constant,

The heat conduction equation has a myriad of solutions, of which a specific solution can only be
determined by first choosing further conditions. Particularly the boundary conditions must be
defined, i.e. the conditions which must be satisfied along the boundaries of the assumed region.

With respect to the particular application, it is reasonabie to assume so called boundary conditions
of the third kind for the surfaces of the interior spaces, which vitimately amonnts to defining an
interior air temperature for each space. For most cases, this thermal coupling of the interior surface
with the interior air temperature represents a reasonably precise approximation — not an exact
description — of the actual circumstances. It takes the exchange of long-wave radiation in the
space into consideration only very indirectly, but still proves to be effectively the only possibility
for keeping the practical scope of calculations necessary to arrive at a solution within justifiable
limits. Also, by taking too many details into consideration, it would become nearly impossible to
maintain a coherent picture of the essential physical relations, criteria for rational design.

The boundary conditions for the exterior of the building differ from those for the interior solely
in that outside, the "air temperature™ may also depend on location. This proves to be necessary
hecause the influcnce of radiation — in particular solar — can by no means be neglected on
the exterior surface. It is well known that allowances can be made for such radiation effects
within the definition of an "air temperature® [7], [8], [9]. The spatial dependancy of the exterior
temperature will usnally be accounted for by introduciug several "exterior spaces” — each with an
air temperature that is the same for all points withing the space. Such a procedure also proves
useful for building components in contact with the ground. Of course, the analysis of wandering
shadow bonndaries is not possible with this method; this shall be left to analyses based on other
concepts.

Taking the hewt transfer coeflicient oy into consideration, the given air space temperatures Ty, k =
0,1,...,m, lead to boundary conditions of the third kind — see [10), page 75. For the boundary
surface Ry, ie. the portion of the building surface in contact with the air of the k-th space, this
condition reads:

(Agradl s + apll = ap-T : (4)

lere ii signifies the unit vector perpendicular to the building component surface and directed into
the k-th space,

Boundary condition (1) must be stated for each space concerned. I not all boundaries of the
bullding structure are thus covered, then further boundary conditions wust be applied. Should
it be required that no heat pass through any such artificially defined boundaries. then one finds



boundary conditions of the second kind (see [10], page 75):

(Agradl/pri =0 i (5)

Since this is just a special case for the third kind, we can continue under the assumption that
conditions of the third kind arc given along all boundaries,

The imposition of boundary conditions alone is not sufficient to uniguely determine a solution
for the heat conduction equation {3). In addition, we must either define an initial condition, i.e.
prescribe the temperature distribution in the structure for a specific initial point in time, or impose
a different suitable condition.

Initial conditions are of no interest in the context discussed here. Time-independence, where
feasible, is often required instead, in which case the left side of the heat conduction equation (3)
disappears. This case is treated in [1]]. When examing heat storage in buildings, one cannot, of
course, Jimit the analysis to this steady-state case, The relevant effects of temporary heat storage
in building assemblies only come to light when the daily rise and fall of the exterior air temperature
as well as interior temwperature fluctuations (for the most part, also of a daily rhythm) are taken
into consideration. This suggests envisaging the periodicity of all the continuos processes rather
than imposing initial conditions.

A temperature function which is bounded and periodic in tinme can always be written as a Fourier
series, that is,

X 1 & ot .

Ule,y.2,t) = 3 Z wy(x, y,z)c" 7 2 (6}

with 2! denoting the time period of the function. If we take this approach into the differential equa-
tion (3} and collect terms, we obtain the following differential equation for the Fourier cocfficient

u (e, y,2):

Y=

; v ; N
begr iy, = div{ Agradu, ) : (7)
Witl: the abbreviation 2% = w and by dropping the index v {unneccessary for comprehensibility
: ) ) p A

here), this becomes

e = divi Agradu) . (8)
a differential equation for the Fourier coefficient . in whieh time is naturally no longer a variable.

"The Fourier coefficients u of the temperature U are easily graphically interpreted. As the [requency
of rotation approaches zero, the function approaches the steady-state case. For w = 0, « becomes
the mean value over time of temperature [/ -— for each considered point respectively. For the value
of frequency w related to the period of a day (as for any value of w not equal to zera), we must
expect a complex function rather than a real value solution to the differential equation {8). The
absolute value of the complex number u supplies the (real) amplitude of the sinus curve run of
temperature I: the argument supplies the phase information. In the following, we shall also refer
to u as the "complex amplitude” of the harmonic related 1o w of the temperatnre function. This.
of course, has the dimension of temperature,

A special solution to the differential equation {8) can be uniquely determined by imposing boundary
conditions: initial conditions are not required since tiwe is not a variable in (8). The boundary
conditions for the differential equation (8) result from carrying over the conditions formulated for
a time-dependant heat conduction »quation (4) into the Fourier coefficients:

{Agradu)-i + opu = oy . (9)



Solving a boundary value problem of this kind in a self-contained manner is only possible for a few
simple cases. Generally, numeric methods aided by electronic data processing are required. One
tries to avoid repeating such an investiment whea new boundary values - in our case, new Fourier
coefficients for air temperatures — should be considered.

A reduction of the effort involved becomes possible because the linearity and homogeneity of diffe-
rential equation (8) allow the superposition of solutions which always lead back to solutions of the
differential equation. Accordingly, it is sufficient to calculate a number of "basic solutions™ which
can then be combined to fulfill actual boundary conditions.

A basic soiution g,(z,y, z) is defined by prescribing the amplitude #; with a value of 1 in the space j
and with a value of 0 in all other spaces. Hence the basic solutions are determined by the boundary
condition

(/\‘gra,dy, Y+ arf; = Qk“skj (10)

for 7 = 0,1,...m along all boundaries R, & = 0,1,...,m. The Einstein summation convention is
not applicable ta this equation; &, stands for the Kronecker delta.

By linear combination of basic solutions, the expression u(z, y,z) of the differential equation (8)
for given Fourier coefficients #; then becomes

"

u(m.y,:):Zl,--yj(.v.y.:) . (11}
=0

The basic solutions are dimensionless by definition. The Fourier coeflicient u receives the dimension
of a temperature through the Fonrier coefficients ¢; of the air temperatures.

Given the calculation of the Fourier coefficients uir,y, z), which must, of course, be performed for
all required harmonics, the expression of the temperature function U/(x, ¥, 2) in space and time is
uo longer ditficult: we simply substilute them into eqnation (6} and carry through the summation.

For practical use, essentially just one daily and the seasonal periods are of importance (the seasonal
especially in counection with building components in contact with the gronnd). In some cases, it
may also make seuse to consider a seven day period, particularly when the interior temperature
fluctuations correlate 1o weekly perindic occupant habits,

3 The conductance concept

The calculation of the temperature distribution in a building structure is not an end in itself.
Though temperatures occurring on the surface of and within building components are of interest,
particelarly in connection with moisture problems, a different question is frequently of primary
importance: what heat flow occurs through the boundaries of a space when the air of this space is
subjected to a given temperature or to a defined temperature fluctuation? The evident goal here
is ultimately the gnestion of what Leating load is required to maintain a desired temperature in a
particular space.

The heat flow @, which flows out of space ¢ through honndary R, is apparently given by

s / / (Agradll }dd (12)

R.



in which da is the surface element oriented from Lhe space toward the huilding compouent. The
Fourier coefficient ¢; for the heat flow @, is accordiugly

7= - /f(A-griulu)‘dtT ! (13}
Ry

If we implement the expression from equation (11) for the Fourier cocfficient w(z,y,2), then we
obtain
g = — Zt,-//(/\-gTady,)vd&' . (14)
2 n,

We shall designate the value of the surface integral of the j—th basic solution g, taken aver the
boundary R, of the i-th space as L,,:

K / (Mgradg;}dd . (15)

7,
The quantity L;, has the dimension of thermal conductance. From now on we shall refer to it as
the "generalized conductance™. When the frequency w = U (i.e. for the steady-state condition or

the O-th harmonic), L;, reduces to the familiar real steady-state thermal conductance value — see
[11], [12]. When w # 0, L,, becomes complex in value.

Now equation (14) takes the form

i = — Z Lijt; A (16)
t

If we allow the i here to run from 0 to m, then we obtain a system of equations which combines the
complex air temperature amplitudes ¢, with the complex heating load amplitudes g;. The thermal
capacity of the air iu the course of heating aud cooling has heen assumed negligable, thus allowing
the interpretation of ¢; as the Leating load. In this case, it is evident that Leat flowing vut through
the space boundaries must correspond to heat supplied to the air within the space at every point
in thme.

The significance of L,, for steady-state conditions, L.e. w = 0, is discussed in detail in [11]. For
w # 0, the watrix of the generalized conductanves L,, must lirst be proven symmetric: this follows
in 2 form analogons to the proof of symmetry for the symmetric steady-state conductance matrix
in [11] and can therefore he kept brief here.

The definition equation (15) of the generalized conductance can also be written as
- Z//ﬁk.-(/\gr:uly, % (17)
kR
Boundary condition (10] leads to the deseription of the Keounecker delta as
i =g + uik-(,\‘grady,)‘x'i . (18)

By inserting this into {17}, it follows that

|
Lij=3 / / gt Agraddy, AT + Z‘: / / K-IA-zl'ndyiJ-ﬁ-(A'::md!h)'d@ . (19)
K R; " Ry

h



The first summation represents a surface integral taken over the entire boundary surface R. If we
implement d@ = —ida'! in the second summation. we then obtain

- l - - .
Ly =Zj gi{ Agradg; )-dd - ;Zf . ety ) @H{(dgiadg;y alda. . (20)

The integral after the smmmation symhol is symmetrical in ¢ and j. The surface integral can be
transformed according to Gauss into

ﬁg,—-(,\-gradg!)-da = - ///[gr:uig.~t Agradg, } + gi-div(A-gradg; )]G ; (21)
R e

Upon applying dilferential equation (8), which wust be fulfilled for the basic solution g;, this

becomes

#g.»-(,\-gmdgl)-dii = - // [gradg;{Agradg;) + i-c-ow-gi-9;]dG . (22)
2

~

This integral is also evidently symmetric in ¢ and 7. Hence it is also valid for the generalized
conductance that

=13 ¢ (23)

.

The practical significance of the generalized conductance values can be inferred from equation (16),
which establishes a relationship between the amplitudes ¢, of the respective air temperatures on the
one side and the amplitudes ¢; of the heating loads in the respective spaces on the other. The real
conductance values for the steady-state condition do the same for the wean values of temperature
and heating load — see [11].

Thus the system of equations (16) — to be preswmed applicable for mean values {steady-state)
as well as for every relevant harmonic -- is the fundamental set of equations for the calculation
of heating loads. It is even suited for a time-dependant (*dynamic™) evaluation of Leating loads,
something uot generally considered in building performance standards. It should be noted that
the system of equations (16) is equally suited for caleulating air temperatures (wean values and
complex amplitudes) with given or partially given heating loads. In particular, it represents the
essential fonndation for caleulating summer interjor temperature fluctuations within a building.
The fact that ¢ represents heating load amplitndes {and nean values) of the interior air but not of
the surfaces and materials of building components is insignificant, as shall be shown in a separate
discourse,

4 The effective thermal capacity

Given periodic heating and cooling processes within a given space {typically assumed to be of a
daily period), a given heating load amplitude induces slighter or greater temperature fluctuations
depending on the type of construction. Conversely: maintaining a given air temperature amplitude
requires a relatively small heating load amplitude in a light form of construction and a large one
in buildings consisting of thick and heavy masses,

“'Here there is a sign error in [11], which nevertheless has no effect on the resnls,

- |



The thermal capacity of a homogeneous solid of mass m with specific heat ¢ is — as is well-known —
given by mec, i.e. the increase §E of the heat quantity stored due to a temperature increase 87 is

0 E = m-c:éT . (24)

This expression is valid during a heating or cooling process for any time interval chosen if we
assume that the temperature increases wniformly throughout the entire solid. For this fictitious
border case, we can also proceed with time derivatives and write

dE dar .

v v m.-c-m (25)
The left side represents the lieat fowing into the solid, Q:

Q= m-c-d—T . (26)

dt

Temperature T is that uniform temperature which manifests itself within the solid as well as in its
enviromment. If this temperature fluctuates with an amplitude #, then

T = #-sinwt 5 (27)

Substituting into (26) delivers
@ = mebw-cosw! ; {28)

in other words, a heat flow with the amplitnde

= mecwf ’ g (24)
Subsequently. this leads to the expression for the thermal capacity mee:

et =

k2. (30
w-f )
This equation can still be employed as a definition for “effective thermal capacity” = even if the
temperature distribution under consideration is not uniform.

Though this interpretation of the thermal capacity of a built space is quite plausible, it is certainly
not complete. If we allow the air temperature in a space to finctuate in a prescribed manner, then
the amplitude of the heat flow passing throngh the space boundaries (i.c. the necessary heating load
amplitude} still depends on which boundary conditions are valid for the other spaces. including the
"exterior spaces”,

Only two of many possibilities shall be considered here:

¢ The temperature in all spaces except for the one under direct counsideration is constant {the
temperature amplitudes disappear).

o The temperature fluctnations are the same in all of the spaces; in particular, the temperature
amplitudes are equal?).

INothing, bowever, pravents the mean temperature values from differing.




The first case is quite simple to refate. If we are interested in the thermal capacity of space ¢, then
equation (16} - thaaks to the disappearance of temperature amplitudes in the other spaces —
recduces to

g ==Lict; . (31)
For the effective thermal capacity we are seeking, we thus obtain

== "d_’ . (32)
This surprisingly simple result concurrently provides an easily comprehensible interpretation of
the primary diagonul in the generalized conductance matrix. However, one can also see that the
effective thermal capacity =; contains less information than the complex generalized conductance
Ly; it does not include the phase shift hetween heat load and temperature functions. Therefore
ellective thermal capacities cannot generaily be taken as a sum, even in the case of paraliel thermal
circuits {whereas conductances are indeed additive in that case).

The second aforementioned case also draws on equation {16), but this time, the same temperature
amplitude is applied in all spaces. These amplitudes shall be denoted as t* and can be lifted out

of the summation. Thas -
L

gi=-1-3"L; . (33)

=0

For the ellective thermal capacity corresponding to these boundary conditions =7, we obtain

- _ | __l . )
T e T w 2 Li ' b

W =)

This effective thermal capacity is therefore determined by the absolute colmmn or row sum for the
space 1 in the conductance matrix.

In practical applications, the lesser of the two thermal capacity vaiues =; and =7 would nsually
be used as a rough estimation. Of course, there is also the possibility of calculating the absolute
values of all the partial sums of the matrix row containing Ly to obtain the smallest value for nse,
Tle question of whether or not such a procedure proves viable is moot, since the understanding
of efiective thermal capacity alone will certainly not sulfice for a reasonably precise guantitative
assertion. The concept of ellective thermal capacity can, however, serve well to illustrate complex
generalized conductance,

The concept of effective thermal capacity is not new, although it has not — to my knowledge —
been treated in such a generalized manner in other publications. For certain simple cases with
one~dimensional heat flow, effective thermal capacities can also be described in equations; in more
complicated cases, they must be calculated with the help of simple algorithms {matrix method J*.

VIt was left undecided in [6] whether or not surface heat transfer coefficients should be taken into account when
calenlating the effective thermal capacity of a building component. Here it shonld be emphasized that a specific
decision in this point may strongly affect the cdenlated values



5 An example

Possible applications of the concepts presented here, in particular that of the conductance ma-
trix, shall now be demonstrated by considering a simple example. In order to bring the essential
properties to the fore, a fictitions building stractuve shall he assumed as a two-dimensional heat
conduction case and numerically calculated. For the purpose of simplicity, the example is stripped
of al] structural details. This does not mean that more complicated practical applications cannot
be carried throngh with the concepts developed here, aided by the computer programs necessary
for such numeric evaluations. The rudimentary nature of the example should serve to coherently
illustrate the method in principle.

We consider a building (two-dimensional) consisting of three rooms as depicted in illustration 2.
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Fignure 2: sketch of the assumed building; dimensions in meters,

Except for the partition wall between room | and room 2, all walls are of concrete with a mass
density of p = 2300 kg™, a specific heat of ¢ = 1130 JTkg~'K~*, and a thermal conductivity of
A =23 W 'K~'. The partition wall hetween room 1 and room 2 is of gypsum wallboard with
0 =600 kgm™ c = 840 J kg™ K=" and A = 0.20 Wm 'K, Except for the left wall of room 1, all
exterior walls are encased in 0.1 m thick exterior insulation with o = 20 kgm=3,¢ = 1400 J kg~ 'K~}
and A = 0.041 W™ K=, In addition. the exterior wall seganent along the upper edge of room
! is sheated with a 0.05 m thick layer of insulation of the same material as the exterior. Doors,
windows, etc., have been omitted intentionally in this example for the purpose of simplicity. All
farther dimeusions are provided in illustration 2. For the exterior, a surface heat transfer coefficient
of @ = 20 Wm™?K=? shall be assumed; for all interior spaces, a; = 8 Wm=2K=1,
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Using a personal computer (80486) and a program [13] specifically developed for such appiications,
all four basic solutions were fitst evaluated for the steady-state case {mean values) as well as for a
24-hour period. Subsequently, the {length-related) conductance matrix is

( -35.400  26.093 2.576 6.732
26.093 —35.749 9.636 (.000

Ly = y (335)
2.576 %656 -26.021  13.789

0.000  13.789 —20.521 /

\ 6.732

for the matrix of the generalized conduetances with a 24-hour period,

—64.112—  12873—  0010-  —0.268 +
( ~33.037i —13.827% —0386-i  +0.0154
12873— —53469— 7244~  —0.000 —
o 13827 ~15.90%4  —3.8234¢  —0.000+ ik
e 0.010-  7T24d= —T79.222-  —1.307 — 30)
—0.386Gi  —3.8234 216264  —0.276
—0.2684  ~0.000— —1307- -132.035 —
400154 —0.0004  —02764  —26.950-

The quantities in the primary diagonal of matrix £, are irrelevant; they simply guarantee the
balance of the column sums to zero, as explained in [11]. From {35) we can deduce that room 1 is
the space most strongly coupled with the exterior (room 0) - the length-related conductance is
26.093 Wm—'K-L.

The space most weakly coupled with the exterior is room 2 with a length related conductance of
2576 Wm~ 'K,

The intermediary thermal coupling of the rooms can also be directly deduced from (35). Rooms
I and 3 are practically not coupled at all: the vaiie of 0.000 Wm~'K~! described in (35) is more
precisely 1175107 *Wm='K~" and therefore beyond the range of decimals shown.

The result from the two—dimensional conductance evaluation between rooms | and 2, which are
separated ounly by a gypsum partition wall, is 9.656 Wm 'K~'. The U-value of this wall is
L6681 Wm=?K=! If we multiply this with the length of the wall (interior dimension: 5.3 m),
we obtain a thermal conductance of just 8910 Wm™ K™, in other words, a value which is too
smwall — as could he expected.

The conductance between rooms 2 and 3 is shown in (35) to be 13.789 Wm~'K~!; the one-
dimensionaily calculated value Lere is of an aporopriate order of magnitude as well.

The application of the conduetance matrix £, in calculating constant heating loads shall not be
treated specifically here; for this, see [14].

The implications of the generalized conductance matrix L4 — equation {36) — cannot be grasped
at a glance. This matrix can be discussed somewhat more casily if we first consider only the absolute
values of its elements. The matrix of quantities for the generalized conductances with a period of

1!



24 hours in this example emerges as

\
([ at60 15892 0.3% 0.268

18.892 53.785 X.191 0.000
3 (37)
0.336  8.191 82.12] 1.336

\ 0.268 0.000 1.336 134.757)

The members of the primary diagonal can be translated into effective thermal capacity =, according
to equation {32) by simply dividing by the frequency of rotation w, For the daily period, w has
the value 5 h=' (0.2618 h™'). The subsequent value of =g, corresponding to the exterior, is thus

72169 _ o= e =
S =

75.7 Whm ="K ~'; this, however, is of no practical sienificance.
1 r

The quantity 55.785 Wm ™ 'K™! in watrix {37) implies that a heating load amplitude (length-
related) 55.785 W™ in room 1 induces a temperature amplitude of 1 K in the same if the
temperature is held constant {i.e. the temperature amplitude vanishes} in all other rooms — in-
cluding the exterior envirommnent. The effective thermal capacity =, of room 1 has the value
#2285 = 213.1 Whm 'Kt,

With =, = 2221 = 3137 Whin™'K~!, room 2 posesses a considerably larger thermal capacity
than roow 1. Room 3 has the largest thermal capacity of =3 = 2457 = 514 TWhm='K~'. These
results appear quite plausible looking at illustration 2.

The quantities off of the diagonal in matrix (37) alsa allow a simple, coherent interpretation. The
reciprocal effect between rooms | and 2 shall be singled out 1o illustrate this. Here the absolute
value is 8.191 Wm~'K~" for the generalized conductance with the indices 1 and 2. A glance
at equation {15} immediately makes clear the significance of this conductance. Since : = 1, the
integral of the heat flow density is taken over the bonudary of room 1, thus determing the heat flow
amplitude in room |. Because j = 2, the basic solution associated with room 2, which assnmes
a temperature amplitude of 1 in this and only this roon, is implemented; all other temperature
amplitudes vanish. Thus the declared value of 3.191 Win= K=" implies that an oscillating heat
flow passes into and out of room 1 respectively if the temperature in room 2 fluctuates with an
amplitude of 1 K.

The reciprocal effect of temperature fluctuations ocenrs most strongly between the interior spaces 1
and 2; as expected, the reciprocation between rooms | and 3 is negligable.

Fluctuations of the exterior temperature affect the individual interior spaces differcutly: room 1
is coupled with 18.802 Win='K~!, whereas all the other rooms are coupled to the exterior very
weakly by comparison.

This interpretation can easily be extended over matrix £a4 of the complex generalized conductance
values for a periad of 24 hours, which supplies the phase shifts between heat flows and temperatures
in addition to the previously discussed absolute valyes.

A deduction of the effective thermal capacities =} out of the generalized conductance matrix (36)
is left to the reader. Hereby one alsa realizes that there is little sense in calenlating the effective
thermal capacity for room { because of the strong coupling to the exterior. In a practical application,
this sitnation wonkd be further iutensified due to the effects of glazing.
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6 Review and prospect

A correct treatment of heat storage processes in building structures is ouly possible by means
of a thorough examination of the relevant time-dependant heat flows. The concept presented
here is only seemingly restricted to periodically Huctnating processes since a generalization which
imcorporates aperiodic functions as well is principally possible with the use of Laplace transforms
[15].

The segment of this discourse most relevant to the practical application of evaluating a building’s
thermal performance is the generalization of the already familiar conduction value concept for
steady-state conditions to include periodically time-dependant conditions as well. This provides
the basis for calculating the thermal performance of entire buildings in which two- and three—
dimensional heat conduction is considered — without a serious increase in complications as com-
pared to one-dimensional, time—dependant calculations.

The interpretation of effective thermal capacity serves to illuminate otherwise analyzed principles
and should not be taken as a recommendation for the use of this concept in researching thermal
properties of building materials and assemblies.

The effects of heat sources. also important for practical applications, has not been treated here;
they shall be examined i an independent discourse,
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